Reference: Niewmierzycka A and Clarke S (1999) S-Adenosylmethionine-dependent methylation in Saccharomyces cerevisiae. Identification of a novel protein arginine methyltransferase. J Biol Chem 274(2):814-24

Reference Help

Abstract

We used sequence motifs conserved in S-adenosylmethionine-dependent methyltransferases to identify 26 putative methyltransferases from the complete genome of the yeast Saccharomyces cerevisiae. Seven sequences with the best matches to the methyltransferase consensus motifs were selected for further study. We prepared yeast disruption mutants of each of the genes encoding these sequences, and we found that disruption of the YJL125c gene is lethal, whereas disruptions of YCR047c and YDR140w lead to slow growth phenotypes. Normal growth was observed when the YDL201w, YDR465c, YHR209w, and YOR240w genes were disrupted. Initial analysis of protein methylation patterns of all mutants by amino acid analysis revealed that the YDR465c mutant has a defect in the methylation of the delta-nitrogen atom of arginine residues. We propose that YDR465c codes for the methyltransferase responsible for this recently characterized type of protein methylation, and we designate the enzyme as Rmt2 (protein arginine methyltransferase). In addition, we show that the methylation of susceptible residues in Rmt2 substrates is likely to take place on nascent polypeptide chains and that these substrates exist in the cell as fully methylated species. Interestingly, Rmt2 has 27% sequence identity over 138 amino acids to the mammalian guanidinoacetate N-methyltransferase, an enzyme responsible for methylating the delta-nitrogen of the small molecule guanidinoacetate.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Niewmierzycka A, Clarke S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference