Reference: Watkins NJ, et al. (1998) Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. RNA 4(12):1549-68

Reference Help

Abstract

The eukaryotic nucleolus contains a large number of small nucleolar RNAs (snoRNAs) that are involved in preribosomal RNA (pre-rRNA) processing. The H box/ACA-motif (H/ACA) class of snoRNAs has recently been demonstrated to function as guide RNAs targeting specific uridines in the pre-rRNA for pseudouridine (psi) synthesis. To characterize the protein components of this class of snoRNPs, we have purified the snR42 and snR30 snoRNP complexes by anti-m3G-immunoaffinity and Mono-Q chromatography of Saccharomyces cerevisiae extracts. Sequence analysis of the individual polypeptides demonstrated that the three proteins Gar1p, Nhp2p, and Cbf5p are common to both the snR30 and snR42 complexes. Nhp2p is a highly basic protein that belongs to a family of putative RNA-binding proteins. Cbf5p has recently been demonstrated to be involved in ribosome biogenesis and also shows striking homology with known prokaryotic psi synthases. The presence of Cbf5p, a putative psi synthase in each H/ACA snoRNP suggests that this class of RNPs functions as individual modification enzymes. Immunoprecipitation studies using either anti-Cbf5p antibodies or a hemagglutinin-tagged Nhp2p demonstrated that both proteins are associated with all H/ACA-motif snoRNPs. In vivo depletion of Nhp2p results in a reduction in the steady-state levels of all H/ACA snoRNAs. Electron microscopy of purified snR42 and snR30 particles revealed that these two snoRNPs possess a similar bipartite structure that we propose to be a major structural determining principle for all H/ACA snoRNPs.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Watkins NJ, Gottschalk A, Neubauer G, Kastner B, Fabrizio P, Mann M, Luhrmann R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference