Reference: Lutfiyya LL, et al. (1998) Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae. Genetics 150(4):1377-91

Reference Help

Abstract

Mig1 and Mig2 are proteins with similar zinc fingers that are required for glucose repression of SUC2 expression. Mig1, but not Mig2, is required for repression of some other glucose-repressed genes, including the GAL genes. A second homolog of Mig1, Yer028, appears to be a glucose-dependent transcriptional repressor that binds to the Mig1-binding sites in the SUC2 promoter, but is not involved in glucose repression of SUC2 expression. Despite their functional redundancy, we found several significant differences between Mig1 and Mig2: (1) in the absence of glucose, Mig1, but not Mig2, is inactivated by the Snf1 protein kinase; (2) nuclear localization of Mig1, but not Mig2, is regulated by glucose; (3) expression of MIG1, but not MIG2, is repressed by glucose; and (4) Mig1 and Mig2 bind to similar sites but with different relative affinities. By two approaches, we have identified many genes regulated by Mig1 and Mig2, and confirmed a role for Mig1 and Mig2 in repression of several of them. We found no genes repressed by Yer028. Also, we identified no genes repressed by only Mig1 or Mig2. Thus, Mig1 and Mig2 are redundant glucose repressors of many genes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Lutfiyya LL, Iyer VR, DeRisi J, DeVit MJ, Brown PO, Johnston M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference