Take our Survey

Reference: Small WC and McAlister-Henn L (1998) Identification of a cytosolically directed NADH dehydrogenase in mitochondria of Saccharomyces cerevisiae. J Bacteriol 180(16):4051-5

Reference Help

Abstract


The reoxidation of NADH generated in reactions within the mitochondrial matrix of Saccharomyces cerevisiae is catalyzed by an NADH dehydrogenase designated Ndi1p (C. A. M. Marres, S. de Vries, and L. A. Grivell, Eur. J. Biochem. 195:857-862, 1991). Gene disruption analysis was used to examine possible metabolic functions of two proteins encoded by open reading frames having significant primary sequence similarity to Ndi1p. Disruption of the gene designated NDH1 results in a threefold reduction in total mitochondrial NADH dehydrogenase activity in cells cultivated with glucose and in a fourfold reduction in the respiration of isolated mitochondria with NADH as the substrate. Thus, Ndh1p appears to be a mitochondrial dehydrogenase capable of using exogenous NADH. Disruption of a closely related gene designated NDH2 has no effect on these properties. Growth phenotype analyses suggest that the external NADH dehydrogenase activity of Ndh1p is important for optimum cellular growth with a number of nonfermentable carbon sources, including ethanol. Codisruption of NDH1 and genes encoding malate dehydrogenases essentially eliminates growth on nonfermentable carbon sources, suggesting that the external mitochondrial NADH dehydrogenase and the malate-aspartate shuttle may both contribute to reoxidation of cytosolic NADH under these growth conditions.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Small WC, McAlister-Henn L
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference