Reference: Alexandre H, et al. (1998) Lack of correlation between trehalose accumulation, cell viability and intracellular acidification as induced by various stresses in Saccharomyces cerevisiae. Microbiology 144 ( Pt 4):1103-11

Reference Help

Abstract

A pma1-1 mutant of Saccharomyces cerevisiae with reduced H(+)-ATPase activity and the isogenic wild-type strain accumulated high levels of trehalose in response to a temperature upshift to 40 degrees C and after addition of 10% ethanol, but only modest levels in response to a rapid drop in external pH and after addition of decanoic acid. There was, however, no correlation between the absolute levels of trehalose in the stressed cells and their viability. All these treatments induced a significant decrease in intracellular pH, and surprisingly, this decrease was very similar in both strains, indicating that intracellular acidification could not be the triggering mechanism for trehalose accumulation in response to stress. A careful investigation of metabolic parameters was carried out to explain how trehalose accumulated under the four different stress conditions tested. No single and common mechanism for trehalose accumulation could be put forward and the transcriptional activation of TPS1 was not unequivocally related to trehalose accumulation. Another finding was that a pma1-1 mutant exhibited a two- to threefold greater capacity to accumulate trehalose than the isogenic wild-type. This enhanced disaccharide synthesis could be attributed to a twofold higher trehalose-6-phosphate synthase activity, together with a fourfold higher content of intracellular UDP-Glc. In addition, this mutant showed 1.5-fold higher levels of ATP compared to the wild-type. The various stress treatments studied showed that a drop in intracellular pH does not correlate with trehalose accumulation. It is suggested that plasma membrane alteration could be the physiological trigger inducing trehalose accumulation in yeast.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Alexandre H, Plourde L, Charpentier C, Francois J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference