Take our Survey

Reference: Suckow M and Hollenberg CP (1998) The activation specificities of wild-type and mutant Gcn4p in vivo can be different from the DNA binding specificities of the corresponding bZip peptides in vitro. J Mol Biol 276(5):887-902

Reference Help

Abstract


Single amino acid substitutions which previously have been shown to alter the DNA binding specificity of a Gcn4p bZip peptide in vitro were transformed to full length Gcn4p, and activation of a test promoter carrying various palindromic and pseudo-palindromic binding sites was measured. All mutations were found to have different phenotypes, and the first change-of-specificity mutants for Gcn4p in vivo are described. The comparison of plasmids encoding no protein or a particular Gcn4p mutant with broadened activation specificity in gcn4 and gcn4 acr1 genetic backgrounds revealed three new DNA targets of the yeast Acr1p repressor. Surprisingly, we found the activation specificities Gcn4p and the mutants tested in vivo to be generally different from DNA binding specificities of the corresponding bZip peptides in vitro. Especially, the proteins respond differently, in vitro and in vivo, on changes in half site spacing of the DNA binding sites. We present data which largely exclude that the differences between in vivo and in vitro-derived results are due to differences in protein structure, or to the presence of competing protein factors in the yeast cell. We conclude that the differences between in vitro and in vivo-derived results are caused by differences in the degree of flexibility of the target DNA sequences in vitro and in vivo.

Reference Type
Journal Article
Authors
Suckow M, Hollenberg CP
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference