Reference: Xue Y, et al. (1998) GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Galpha subunit and functions in a Ras-independent pathway. EMBO J 17(7):1996-2007

Reference Help

Abstract

The yeast RAS1 and RAS2 genes appear to be involved in control of cell growth in response to nutrients. Here we show that this growth control also involves a signal mediated by the heterotrimeric G protein alpha subunit homolog encoded by GPA2. A GPA2 null allele conferred a severe growth defect on cells containing a null allele of RAS2, although either mutation alone had little effect on growth rate. A constitutive allele of GPA2 could stimulate growth of a strain lacking both RAS genes. Constitutive GPA2 conferred heat shock sensitivity on both wild-type cells and cells lacking RAS function, but had no effect in a strain containing a null allele of SCH9, which encodes a kinase related to protein kinase A. The GPR1 gene was isolated and was found to encode a protein with the characteristics of a G protein-coupled receptor. Double Deltagpr1 Deltaras2 mutants displayed a severe growth defect that was suppressed by expression of the constitutive allele of GPA2, confirming that GPR1 acts upstream of GPA2. Gpr1p is expressed on the cell surface and requires sequences in the membrane-proximal region of its third cytoplasmic loop for function, as expected for a G protein-coupled receptor. GPR1 RNA was induced when cells were starved for nitrogen and amino acids. These results are consistent with a model in which the GPR1/GPA2 pathway activates the Sch9p kinase to generate a response that acts in parallel with that generated by the Ras/cAMP pathway, resulting in the integration of nutrient signals.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Xue Y, Batlle M, Hirsch JP
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference