Reference: Cho RJ, et al. (1998) Parallel analysis of genetic selections using whole genome oligonucleotide arrays. Proc Natl Acad Sci U S A 95(7):3752-7

Reference Help

Abstract


Thousands of genes have recently been sequenced in organisms ranging from Escherichia coli to human. For the majority of these genes, however, available sequence does not define a biological role. Efficient functional characterization of these genes requires strategies for scaling genetic analyses to the whole genome level. Plasmid-based library selections are an established approach to the functional analysis of uncharacterized genes and can help elucidate biological function by identifying, for example, physical interactors for a gene and genetic enhancers and suppressors of mutant phenotypes. The application of these selections to every gene in a eukaryotic genome, however, is generally limited by the need to manipulate and sequence hundreds of DNA plasmids. We present an alternative approach in which identification of nucleic acids is accomplished by direct hybridization to high-density oligonucleotide arrays. Based on the complete sequence of Saccharomyces cerevisiae, high-density arrays containing oligonucleotides complementary to every gene in the yeast genome have been designed and synthesized. Two-hybrid protein-protein interaction screens were carried out for S. cerevisiae genes implicated in mRNA splicing and microtubule assembly. Hybridization of labeled DNA derived from positive clones is sufficient to characterize the results of a screen in a single experiment, allowing rapid determination of both established and previously unknown biological interactions. These results demonstrate the use of oligonucleotide arrays for the analysis of two-hybrid screens. This approach should be generally applicable to the analysis of a range of genetic selections.

Reference Type
Authors
Cho RJ, Fromont-Racine M, Wodicka L, Feierbach B, Stearns T, Legrain P, Lockhart DJ, Davis RW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference