Reference: Wang X, et al. (1998) Molecular cloning, characterization, and potential roles of cytosolic and mitochondrial aldehyde dehydrogenases in ethanol metabolism in Saccharomyces cerevisiae. J Bacteriol 180(4):822-30

Reference Help

Abstract


The full-length DNAs for two Saccharomyces cerevisiae aldehyde dehydrogenase (ALDH) genes were cloned and expressed in Escherichia coli. A 2,744-bp DNA fragment contained an open reading frame encoding cytosolic ALDH1, with 500 amino acids, which was located on chromosome XVI. A 2,661-bp DNA fragment contained an open reading frame encoding mitochondrial ALDH5, with 519 amino acids, of which the N-terminal 23 amino acids were identified as the putative leader sequence. The ALDH5 gene was located on chromosome V. The commercial ALDH (designated ALDH2) was partially sequenced and appears to be a mitochondrial enzyme encoded by a gene located on chromosome XV. The recombinant ALDH1 enzyme was found to be essentially NADP dependent, while the ALDH5 enzyme could utilize either NADP or NAD as a cofactor. The activity of ALDH1 was stimulated two- to fourfold by divalent cations but was unaffected by K+ ions. In contrast, the activity of ALDH5 increased in the presence of K+ ions: 15-fold with NADP and 40-fold with NAD, respectively. Activity staining of isoelectric focusing gels showed that cytosolic ALDH1 contributed 30 to 70% of the overall activity, depending on the cofactor used, while mitochondrial ALDH2 contributed the rest. Neither ALDH5 nor the other ALDH-like proteins identified from the genomic sequence contributed to the in vitro oxidation of acetaldehyde. To evaluate the physiological roles of these three ALDH isoenzymes, the genes encoding cytosolic ALDH1 and mitochondrial ALDH2 and ALDH5 were disrupted in the genome of strain TWY397 separately or simultaneously. The growth of single-disruption delta ald1 and delta ald2 strains on ethanol was marginally slower than that of the parent strain. The delta ald1 delta ald2 double-disruption strain failed to grow on glucose alone, but growth was restored by the addition of acetate, indicating that both ALDHs might catalyze the oxidation of acetaldehyde produced during fermentation. The double-disruption strain grew very slowly on ethanol. The role of mitochondrial ALDH5 in acetaldehyde metabolism has not been defined but appears to be unimportant.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S. | Comparative Study
Authors
Wang X, Mann CJ, Bai Y, Ni L, Weiner H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference