Take our Survey

Reference: Paraskeva E, et al. (1998) A translational repression assay procedure (TRAP) for RNA-protein interactions in vivo. Proc Natl Acad Sci U S A 95(3):951-6

Reference Help

Abstract

RNA-protein interactions are central to many aspects of cellular metabolism, cell differentiation, and development as well as the replication of infectious pathogens. We have devised a versatile, broadly applicable in vivo system for the analysis of RNA-protein interactions in yeast. TRAP (translational repression assay procedure) is based on the translational repression of a reporter mRNA encoding green fluorescent protein by an RNA-binding protein for which a cognate binding site has been introduced into the 5' untranslated region. Because protein binding to the 5' untranslated region can sterically inhibit ribosome association, expression of the cognate binding protein causes significant reduction in the levels of green fluorescent protein fluorescence. By using RNA-protein interactions with affinities in the micromolar to nanomolar range, we demonstrate the specificity of TRAP as well as its ability to recover the cDNA encoding a specific RNA-binding protein, which has been diluted 500,000-fold with unrelated cDNAs, by using fluorescence-activated cell sorting. We suggest that TRAP offers a strategy to clone RNA-binding proteins for which little else than the binding site is known, to delineate RNA sequence requirements for protein binding as well as the protein domains required for RNA binding, and to study effectors of RNA-protein interactions in vivo.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Paraskeva E, Atzberger A, Hentze MW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference