Reference: Hung IH, et al. (1998) HAH1 is a copper-binding protein with distinct amino acid residues mediating copper homeostasis and antioxidant defense. J Biol Chem 273(3):1749-54

Reference Help

Abstract


HAH1 is a 68-amino acid protein originally identified as a human homologue of Atx1p, a multi-copy suppressor of oxidative injury in sod1 delta yeast. Molecular modeling of HAH1 predicts a protein structure of two alpha-helices overlaying a four-stranded antiparallel beta-sheet with a potential metal binding site involving two conserved cysteine residues. Consistent with this model, in vitro studies with recombinant HAH1 directly demonstrated binding of Cu(I), and site-directed mutagenesis identified these cysteine residues as copper ligands. Expression of wild type and mutant HAH1 in atx1 delta yeast revealed the essential role of these cysteine residues in copper trafficking to the secretory compartment in vivo, as expression of a Cys-12/Cys-15 double mutant abrogated copper incorporation into the multicopper oxidase Fet3p. In contrast, mutation of the highly conserved lysine residues in the carboxyl terminus of HAH1 had no effect on copper trafficking to the secretory pathway but eliminated the antioxidant function of HAH1 in sod1 delta yeast. Taken together, these data support the concept of a unique copper coordination environment in HAH1 that permits this protein to function as an intracellular copper chaperone mediating distinct biological processes in eucaryotic cells.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Hung IH, Casareno RL, Labesse G, Mathews FS, Gitlin JD
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference