Reference: Verreault A, et al. (1998) Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Curr Biol 8(2):96-108

Reference Help

Abstract

BACKGROUND: In eukaryotic cells, newly synthesized histone H4 is acetylated at lysines 5 and 12, a transient modification erased by deacetylases shortly after deposition of histones into chromosomes. Genetic studies in Saccharomyces cerevisiae revealed that acetylation of newly synthesized histones H3 and H4 is likely to be important for maintaining cell viability; the precise biochemical function of this acetylation is not known, however. The identification of enzymes mediating site-specific acetylation of H4 at Lys5 and Lys12 may help explain the function of the acetylation of newly synthesized histones. RESULTS: A cDNA encoding the catalytic subunit of the human Hat1 acetyltransferase was cloned and, using specific antibodies, the Hat1 holoenzyme was purified from human 293 cells. The human enzyme acetylates soluble but not nucleosomal H4 at Lys5 and Lys12 and acetylates histone H2A at Lys5. Unexpectedly, we found Hat1 in the nucleus of S-phase cells. Like its yeast counterpart, the human holoenzyme consists of two subunits: a catalytic subunit, Hat1, and a subunit that binds core histones, p46, which greatly stimulates the acetyltransferase activity of Hat1. Both p46 and the highly related p48 polypeptide (the small subunit of human chromatin assembly factor 1; CAF-1) bind directly to helix 1 of histone H4, a region that is not accessible when H4 is in chromatin. CONCLUSIONS: We suggest that p46 and p48 are core-histone-binding subunits that target chromatin assembly factors, chromatin remodeling factors, histone acetyltransferases and histone deacetylases to their histone substrates in a manner that is regulated by nucleosomal DNA.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Verreault A, Kaufman PD, Kobayashi R, Stillman B
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference