Reference: Garrett JM (1997) The control of morphogenesis in Saccharomyces cerevisiae by Elm1 kinase is responsive to RAS/cAMP pathway activity and tryptophan availability. Mol Microbiol 26(4):809-20

Reference Help

Abstract

Many fungi undergo a morphological transition to filamentous growth in response to limiting nutrient conditions. Constitutively elongated Saccharomyces cerevisiae mutants (elm) have been isolated; the ELM1 gene encodes a putative serine/threonine protein kinase. A novel allele, elm1-15, has been isolated in an S288C-derived strain, which causes a pleiotropic phenotype, including media-specific growth effects, abnormal morphology and altered stress response, in cells that are auxotrophic for tryptophan. elm1-15 trp1 cells cannot use many nitrogen sources, are sensitive to amino acid analogues, have very low general amino acid permease activity and do not accumulate trehalose. In contrast, haploid elm1-15 TRP1 cells grow well in budding form on all media, are stress resistant and overaccumulate trehalose. Several lines of evidence suggest that Elm1 acts on functions related to the RAS/cAMP pathway. Overexpression of Elm1 partially rescues the ts phenotype of cdc25 and cyr1 mutants. Deletion of ELM1 in low PKA activity mutants increased the severity of their phenotypes, and activation of Ras2 decreases the cell elongation phenotype of elm1 mutants. A 'signal integration' model for the complex relationship of Elm1 and the RAS/cAMP pathway in controlling morphogenesis in response to nutrients is proposed.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Garrett JM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference