Take our Survey

Reference: Alspaugh JA, et al. (1997) Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha subunit GPA1 and cAMP. Genes Dev 11(23):3206-17

Reference Help

Abstract

This study explores signal transduction pathways that function during mating and infection in the opportunistic, human fungal pathogen Cryptococcus neoformans. The gene encoding a G-protein alpha subunit homolog, GPA1, was disrupted by homologous recombination. The gpa1 mutant strain was viable but exhibited a defect in mating in response to nitrogen starvation. Additionally, the gpa1 mutant strain failed to induce two well-established virulence factors-melanin synthesis, in response to glucose starvation; and capsule production, in response to iron limitation. As a consequence, virulence of the gpa1 mutant strain was significantly attenuated in an animal model of cryptococcal meningitis. Reintroduction of the wild-type GPA1 gene complemented the gpa1 mutant phenotypes and restored mating, melanin and capsule production, and virulence. Similarly, exogenous cAMP also suppressed the gpa1 mutant phenotypes, restoring mating and production of melanin and capsule. These observations support a model in which GPA1 has a role in sensing diverse environmental signals required for mating and virulence by regulating cAMP metabolism in C. neoformans.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Alspaugh JA, Perfect JR, Heitman J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference