Reference: Gray MD, et al. (1997) The Werner syndrome protein is a DNA helicase. Nat Genet 17(1):100-3

Reference Help

Abstract

Werner syndrome (WS) is an uncommon autosomal recessive disorder characterized by premature aging. The clinical manifestations of WS, including atherosclerosis and osteoporosis, appear early in adulthood, and death in the fourth to sixth decade commonly ensues from myocardial infarction or cancer. In accord with the aging phenotype, cells from WS patients have a reduced replicative life span in culture. Genomic instability is observed at the cytogenetic level in the form of chromosome breaks and translocations and at the molecular level by multiple large deletions. The Werner syndrome gene (WRN) has recently been cloned. The predicted product is a 1,432-amino-acid protein whose central domain is homologous to members of the RecQ family of DNA helicases. Such homology does not necessarily mean that WRN encodes an active helicase. For example, the Saccharomyces cerevisiae RAD26 gene protein and the human transcription-repair coupling factor CSB (Cockayne syndrome 8) are highly homologous to known helicases, yet neither encodes an active helicase. Moreover, the Bloom's syndrome gene (BLM), discovered before WRN, is also homologous to the RecQ family of DNA helicases, though we still await demonstration that it encodes an active helicase. Here we report that the WS protein does indeed catalyze DNA unwinding.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Gray MD, Shen JC, Kamath-Loeb AS, Blank A, Sopher BL, Martin GM, Oshima J, Loeb LA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference