Take our Survey

Reference: Wang SP, et al. (1997) Phylogeny of mRNA capping enzymes. Proc Natl Acad Sci U S A 94(18):9573-8

Reference Help

Abstract


The m7GpppN cap structure of eukaryotic mRNA is formed cotranscriptionally by the sequential action of three enzymes: RNA triphosphatase, RNA guanylyltransferase, and RNA (guanine-7)-methyltransferase. A multifunctional polypeptide containing all three active sites is encoded by vaccinia virus. In contrast, fungi and Chlorella virus encode monofunctional guanylyltransferase polypeptides that lack triphosphatase and methyltransferase activities. Transguanylylation is a two-stage reaction involving a covalent enzyme-GMP intermediate. The active site is composed of six protein motifs that are conserved in order and spacing among yeast and DNA virus capping enzymes. We performed a structure-function analysis of the six motifs by targeted mutagenesis of Ceg1, the Saccharomyces cerevisiae guanylyltransferase. Essential acidic, basic, and aromatic functional groups were identified. The structural basis for covalent catalysis was illuminated by comparing the mutational results with the crystal structure of the Chlorella virus capping enzyme. The results also allowed us to identify the capping enzyme of Caenorhabditis elegans. The 573-amino acid nematode protein consists of a C-terminal guanylyltransferase domain, which is homologous to Ceg1 and is strictly conserved with respect to all 16 amino acids that are essential for Ceg1 function, and an N-terminal phosphatase domain that bears no resemblance to the vaccinia triphosphatase domain but, instead, has strong similarity to the superfamily of protein phosphatases that act via a covalent phosphocysteine intermediate.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Wang SP, Deng L, Ho CK, Shuman S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference