Reference: Chua PR and Roeder GS (1997) Tam1, a telomere-associated meiotic protein, functions in chromosome synapsis and crossover interference. Genes Dev 11(14):1786-800

Reference Help

Abstract

The TAM1 gene of Saccharomyces cerevisiae is expressed specifically during meiosis and encodes a protein that localizes to the ends of meiotic chromosomes. In a tam1 null mutant, there is an increase in the frequency of chromosomes that fail to recombine and an associated increase in homolog nondisjunction at meiosis I. The tam1 mutant also displays an increased frequency of precocious separation of sister chromatids and a reduced efficiency of distributive disjunction. The defect in distributive disjunction may be attributable to overloading of the distributive system by the increased number of nonrecombinant chromosomes. Recombination is not impaired in the tam1 mutant, but crossover interference is reduced substantially. In addition, chromosome synapsis is delayed in tam1 strains. The combination of a defect in synapsis and a reduction in interference is consistent with previous studies suggesting a role for the synaptonemal complex in regulating crossover distribution. tam1 is the only known yeast mutant in which the control of crossover distribution is impaired, but the frequency of crossing over is unaffected. We discuss here possibilities for how a telomere-associated protein might function in chromosome synapsis and crossover interference.

Reference Type
Journal Article
Authors
Chua PR, Roeder GS
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference