Reference: Kimura Y, et al. (1997) Cdc37 is a molecular chaperone with specific functions in signal transduction. Genes Dev 11(14):1775-85

Reference Help

Abstract


Cdc37 is required for cyclin-dependent kinase activation and is genetically linked with the activity of several other kinases, including oncogenic v-Src, casein kinase II, MPS-1 kinase, and sevenless. Strikingly, many pathways involving Cdc37 also involve the protein chaperone Hsp90. The identification of Cdc37 as the 50-kD protein in several Hsp90-kinase complexes, together with other data, led to the recent suggestion that Cdc37 is a kinase-targeting "subunit" of Hsp90. We directly examined the effect of Cdc37 on Hsp90 functions. Rather than simply acting as an accessory factor for Hsp90, Cdc37 is itself a protein chaperone with properties remarkably similar to those of Hsp90. In vitro, Cdc37 maintains denatured beta-galactosidase in an activation-competent state without reactivating it and stabilizes mature, but unstable, casein kinase II. In vivo, Cdc37 overexpression can compensate for decreased Hsp90 function, but the proteins are not interchangeable. Cdc37 can compensate for Hsp90 in maintaining the activity of v-Src kinase but does not maintain the activity of the glucocorticoid receptor. Thus, the very similar chaperone activities of the two proteins, uncovered through in vitro analysis, diverge in vivo in specific signal transduction pathways.

Reference Type
Journal Article
Authors
Kimura Y, Rutherford SL, Miyata Y, Yahara I, Freeman BC, Yue L, Morimoto RI, Lindquist S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference