Take our Survey

Reference: Jiang HQ, et al. (1997) Pleiotropic effects of intron removal on base modification pattern of yeast tRNAPhe: an in vitro study. Nucleic Acids Res 25(14):2694-701

Reference Help

Abstract

Cell-free yeast extract has been successfully used to catalyze the enzymatic formation of 11 out of the 14 naturally occurring modified nucleotides in yeast tRNAPhe(anticodon GAA). They are m2G10, D17, m22G26, Cm32, Gm34,psi39, m5C40, m7G46, m5C49, T54 andpsi55. Only D16, Y37 and m1A58 were not formed under in vitro conditions. However, m1G37was quantitatively produced instead of Y37. The naturally occurring intron was absolutely required for m5C40formation while it hindered completely the enzymatic formation of Cm32, Gm34and m1G37. Enzymatic formation of m22G26,psi39, m7G46, m5C49, T54 andpsi55were not or only slightly affected by the presence of the intron. These results allow us to classify the different tRNA modification enzymes into three groups: intron insensitive, intron dependent, and those requiring the absence of the intron. The fact that truncated tRNAPheconsisting of the anticodon stem and loop prolonged with the 19 nucleotide long intron is a substrate for tRNA: cytosine-40 methylase demonstrates that the enzyme is not only strictly intron dependent, but also does not require fully structured tRNA.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Jiang HQ, Motorin Y, Jin YX, Grosjean H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference