Reference: Russnak R, et al. (1996) RNA binding analysis of yeast REF2 and its two-hybrid interaction with a new gene product, FIR1. Gene Expr 6(4):241-58

Reference Help

Abstract


The product of the REF2 gene is required for optimal levels of endonucleolytic cleavage at the 3' ends of yeast mRNA, prior to the addition of a poly(A) tail. To test the role of the previously demonstrated nonspecific affinity of REF2 for RNA in this process, we have identified RNA binding mutants in vitro and tested them for function within the cell. One REF2 variant, with an internal deletion of 82 amino acids (269-350), displays a 10-fold reduction in RNA binding, yet still retains full levels of processing activity in vivo. Conversely, a series of carboxyl-terminal deletions that maintain full RNA binding capability have progressively decreasing activity. These results rule out a major role for the central RNA binding domain of REF2 in mRNA 3' end processing and demonstrate the importance of the carboxyl-terminal region. To ask if the stimulatory role of REF2 depends on interactions with other proteins, we used a two-hybrid screen to identify a new protein termed FIR1 (Factor Interacting with REF) encoded on chromosome V. FIR1 interacts with two independent regions of REF2, one of which (amino acids 268-345) overlaps the RNA binding domain and is dispensible for REF2 function, whereas the other (amino acids 391-533) is located within the critical carboxyl-terminus. As with REF2, FIR1 has a small but detectable role in influencing the efficiency of poly(A) site use. Yeast strains containinga disrupted FIR1 gene are slightly less efficient in the use of cryptic poly(A) sites located within the lacZ portion of an ACT1-lacZ reporter construct. Likewise, a double delta ref2, delta fir1 mutant is more defective in processing of a reporter CYC1 poly(A) site than delta ref2 alone. This synergistic response provides additional support for the interaction of FIR1 with REF2 in vivo, and suggests that a number of gene products may be involved in regulating the cleavage reaction in yeast.

Reference Type
Journal Article
Authors
Russnak R, Pereira S, Platt T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference