Reference: Watanabe K, et al. (1997) The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 A resolution: structural characterization of proline-substitution sites for protein thermostabilization. J Mol Biol 269(1):142-53

Reference Help

Abstract

The crystal structure of oligo-1,6-glucosidase (dextrin 6-alpha-glucanohydrolase, EC 3.2.1.10) from Bacillus cereus ATCC7064 has been refined to 2.0 A resolution with an R-factor of 19.6% for 43,328 reflections. The final model contains 4646 protein atoms and 221 ordered water molecules with respective root-mean-square deviations of 0.015 A for bond lengths and of 3.166 degrees for bond angles from the ideal values. The structure consists of three domains: the N-terminal domain (residues 1 to 104 and 175 to 480), the subdomain (residues 105 to 174) and the C-terminal domain (residues 481 to 558). The N-terminal domain takes a (beta/alpha)8-barrel structure with additions of an alpha-helix (N alpha6') between the sixth strand Nbeta6 and the sixth helix N alpha6, an alpha-helix (N alpha7') between the seventh strand Nbeta7 and the seventh helix N alpha7 and three alpha-helices (N alpha8', N alpha8" and N alpha8'" between the eighth strand Nbeta8 and the eighth helix N alpha8. The subdomain is composed of an alpha-helix, a three-stranded antiparallel beta-sheet, and long intervening loops. The C-terminal domain has a beta-barrel structure of eight antiparallel beta-strands folded in double Greek key motifs, which is distorted in the sixth strand Cbeta6. Three catalytic residues, Asp199, Glu255 and Asp329, are located at the bottom of a deep cleft formed by the subdomain and a cluster of the two additional alpha-helices N alpha8' and N alpha8" in the (beta/alpha)8-barrel. The refined structure reveals the locations of 21 proline-substitution sites that are expected to be critical to protein thermostabilization from a sequence comparison among three Bacillus oligo-1,6-glucosidases with different thermostability. These sites lie in loops, beta-turns and alpha-helices, in order of frequency, except for Cys515 in the fourth beta-strand Cbeta4 of the C-terminal domain. The residues in beta-turns (Lys121, Glu208, Pro257, Glu290, Pro443, Lys457 and Glu487) are all found at their second positions, and those in alpha-helices (Asn109, Glu175, Thr261 and Ile403) are present at their N1 positions of the first helical turns. Those residues in both secondary structures adopt phi and phi values favorable for proline substitution. Residues preceding the 21 sites are mostly conserved upon proline occurrence at these 21 sites in more thermostable Bacillus oligo-1,6-glucosidases. These structural features with respect to the 21 sites indicate that the sites in beta-turns and alpha-helices have more essential prerequisites for proline substitution to thermostabilize the protein than those in loops. This well supports the previous finding that the replacement at the appropriate positions in beta-turns or alpha-helices is the most effective for protein thermostabilization by proline substitution.

Reference Type
Journal Article
Authors
Watanabe K, Hata Y, Kizaki H, Katsube Y, Suzuki Y
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference