Reference: Labbe S, et al. (1997) Copper-specific transcriptional repression of yeast genes encoding critical components in the copper transport pathway. J Biol Chem 272(25):15951-8

Reference Help

Abstract

Copper is an essential micronutrient that is toxic in excess. To maintain an adequate yet non-toxic concentration of copper, cells possess several modes of control. One involves copper uptake mediated by genes encoding proteins that play key roles in high affinity copper transport. These include the FRE1-encoded Cu2+/Fe3+ reductase and the CTR1 and CTR3-encoded membrane-associated copper transport proteins. Each of these genes is transcriptionally regulated as a function of copper availability: repressed when cells are grown in the presence of copper and highly activated during copper starvation. Our data demonstrate that repression of CTR3 transcription is exquisitely copper-sensitive and specific. Although copper represses CTR3 gene expression at picomolar metal concentrations, cadmium and mercury down-regulate CTR3 expression only at concentrations 3 orders magnitude greater. Furthermore, copper-starvation rapidly and potently induces CTR3 gene expression. We demonstrate that the CTR1, CTR3, and FRE1 genes involved in high affinity copper uptake share a common promoter element, TTTGCTC, which is necessary for both copper repression and copper-starvation activation of gene expression. Furthermore, the Mac1p is essential for down- or up-regulation of the copper-transport genes. In vivo footprinting studies reveal that the cis-acting element, termed CuRE (copper-response element), is occupied under copper-starvation and accessible to DNA modifying agents in response to copper repression, and that this regulated occupancy requires a functional MAC1 gene. Therefore, yeast cells coordinately express genes involved in high affinity copper transport through the action of a common signaling pathway.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Labbe S, Zhu Z, Thiele DJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference