Reference: Ingelman M, et al. (1997) The three-dimensional structure of flavodoxin reductase from Escherichia coli at 1.7 A resolution. J Mol Biol 268(1):147-57

Reference Help

Abstract


Flavodoxin reductase from Escherichia coli is an FAD-containing oxidoreductase that transports electrons between flavodoxin or ferredoxin and NADPH. Together with flavodoxin, the enzyme is involved in the reductive activation of three E. coli enzymes: cobalamin-dependent methionine synthase, pyruvate formate lyase and anaerobic ribonucleotide reductase. An additional function for the oxidoreductase appears to be to protect the bacteria against oxygen radicals. The three-dimensional structure of flavodoxin reductase has been solved by multiple isomorphous replacement, and has been refined at 1.7 A to an R-value of 18.4% and Rfree 24.8%. The monomeric molecule contains one beta-sandwich FAD domain and an alpha/beta NADP domain. The overall structure is similar to other reductases of the NADP-ferredoxin reductase family in spite of the low sequence similarities within the family. Flavodoxin reductase lacks the loop which is involved in the binding of the adenosine moiety of FAD in other FAD binding enzymes of the superfamily but is missing in the FMN binding phthalate dioxygenase reductase. Instead of this loop, the adenine interacts with an extra tryptophan at the C terminus. The FAD in flavodoxin reductase has an unusual bent conformation with a hydrogen bond between the adenine and the isoalloxazine. This is probably the cause of the unusual spectrum of the enzyme. There is a pronounced cleft close to the isoalloxazine that appears to be well suited for binding of flavodoxin/ferredoxin. Two extra short strands of the NADP-binding domain probably act as an anchor point for the binding of flavodoxin.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Comparative Study
Authors
Ingelman M, Bianchi V, Eklund H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference