Take our Survey

Reference: Klomp LW, et al. (1997) Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J Biol Chem 272(14):9221-6

Reference Help

Abstract

To search for a mammalian homologue of ATX1, a human liver cDNA library was screened and a cDNA clone was isolated, which encodes a protein with 47% amino acid identity to Atx1p including conservation of the MTCXGC copper-binding domain. RNA blot analysis using this cDNA identified an abundant 0.5-kilobase mRNA in all human tissues and cell lines examined. Southern blot analysis using this same clone indicated that the corresponding gene exists as a single copy in the haploid genome, and chromosomal localization by fluorescence in situ hybridization detected this locus at the interface between bands 5q32 and 5q33. Yeast strains lacking copper/zinc superoxide dismutase (SOD1) are sensitive to redox cycling agents and dioxygen and are auxotrophic for lysine when grown in air, and expression of this human ATX1 homologue (HAH1) in these strains restored growth on lysine-deficient media. Yeast strains lacking ATX1 are deficient in high affinity iron uptake and expression of HAH1 in these strains permits growth on iron-depleted media and results in restoration of copper incorporation into newly synthesized Fet3p. These results identify HAH1 as a novel ubiquitously expressed protein, which may play an essential role in antioxidant defense and copper homeostasis in humans.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Klomp LW, Lin SJ, Yuan DS, Klausner RD, Culotta VC, Gitlin JD
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference