Take our Survey

Reference: Baker SH, et al. (1997) Alanine-scanning mutagenesis of protein phosphatase type 1 in the yeast Saccharomyces cerevisiae. Genetics 145(3):615-26

Reference Help

Abstract

Protein phosphatase type 1, encoded by GLC7 in Saccharomyces cerevisiae, is an essential serine/threonine phosphatase implicated in the regulation of a diverse array of physiological functions. We constructed and examined 20 mutant alleles of GLC7 in which codons encoding clusters of charged residues were changed to alanine codons. Three of 20 mutant alleles alter residues in the active site of the phosphatase and are unable to rescue the lethality of a glc7::LEU2 disruption. The 17 alleles that support growth confer a range of mutant traits including cell cycle arrest, 2-deoxyglucose resistance, altered levels of glycogen, sensitivity to high salt, and sporulation defects. For some traits, such as 2-deoxyglucose resistance and cell cycle arrest, the mutated residues map to specific regions of the protein whereas the mutated residues in glycogen-deficient mutants and sporulation-defective mutants are more widely distributed over the protein surface. Many mutants have complex phenotypes, each displaying a diverse range of defects. The wide range of phenotypes identified from the collection of mutant alleles is consistent with the hypothesis that Glc7p-binding proteins, which are thought to regulate the specificity of Glc7p, have overlapping binding sites on the surface of Glc7p. This could account for the high level of sequence conservation found among type 1 protein phosphatases from different species.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Baker SH, Frederick DL, Bloecher A, Tatchell K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference