Take our Survey

Reference: Hechenberger M, et al. (1996) A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption. J Biol Chem 271(52):33632-8

Reference Help

Abstract

We have cloned four novel members of the CLC family of chloride channels from Arabidopsis thaliana. The four plant genes are homologous to a recently isolated chloride channel gene from tobacco (CLC-Nt1; Lurin, C., Geelen, D., Barbier-Brygoo, H., Guern, J., and Maurel, C. (1996) Plant Cell 8, 701-711) and are about 30% identical in sequence to the most closely related CLC-6 and CLC-7 putative chloride channels from mammalia. AtCLC transcripts are broadly expressed in the plant. Similarly, antibodies against the AtCLC-d protein detected the protein in all tissues, but predominantly in the silique. AtCLC-a and AtCLC-b are highly homologous to each other ( approximately 87% identity), while being approximately 50% identical to either AtCLC-c or AtCLC-d. None of the four cDNAs elicited chloride currents when expressed in Xenopus oocytes, either singly or in combination. Among these genes, only AtCLC-d could functionally substitute for the single yeast CLC protein, restoring iron-limited growth of a strain disrupted for this gene. Introduction of disease causing mutations, identified in human CLC genes, abolished this capacity. Consistent with a similar function of both proteins, the green fluorescent protein-tagged AtCLC-d protein showed the identical localization pattern as the yeast ScCLC protein. This suggests that in Arabidopsis AtCLC-d functions as an intracellular chloride channel.

Reference Type
Journal Article
Authors
Hechenberger M, Schwappach B, Fischer WN, Frommer WB, Jentsch TJ, Steinmeyer K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference