Reference: Nelson TJ, et al. (1996) Calexcitin: a signaling protein that binds calcium and GTP, inhibits potassium channels, and enhances membrane excitability. Proc Natl Acad Sci U S A 93(24):13808-13

Reference Help

Abstract


A previously uncharacterized 22-kDa Ca(2+)-binding protein that also binds guanosine nucleotides was characterized, cloned, and analyzed by electrophysiological techniques. The cloned protein, calexcitin, contains two EF-hands and also has homology with GTP-binding proteins in the ADP ribosylation factor family. In addition to binding two molecules of Ca2+, calexcitin bound GTP and possessed GTPase activity. Calexictin is also a high affinity substrate for protein kinase C. Application of calexcitin to the inner surface of inside-out patches of human fibroblast membranes, in the presence of Ca2+ and the absence of endogenous Ca2+/calmodulin kinase type II or protein kinase C activity, reduced the mean open time and mean open probability of 115 +/- 6 pS K+ channels. Calexcitin thus appears to directly regulate K+ channels. When microinjected into molluscan neurons or rabbit cerebellar Purkinje cell dendrites, calexcitin was highly effective in enhancing membrane excitability. Because calexcitin translocates to the cell membrane after phosphorylation, calexcitin could serve as a Ca(2+)-activated signaling molecule that increases cellular excitability, which would in turn increase Ca2+ influx through the membrane. This is also the first known instance of a GTP-binding protein that binds Ca2+.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Comparative Study
Authors
Nelson TJ, Cavallaro S, Yi CL, McPhie D, Schreurs BG, Gusev PA, Favit A, Zohar O, Kim J, Beushausen S, ... Show all
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference