Take our Survey

Reference: Watanabe R, et al. (1996) PIG-A and PIG-H, which participate in glycosylphosphatidylinositol anchor biosynthesis, form a protein complex in the endoplasmic reticulum. J Biol Chem 271(43):26868-75

Reference Help

Abstract

Many eukaryotic cell surface proteins are bound to the membrane via a glycosylphosphatidylinositol (GPI) anchor. Assembly of the GPI anchor precursor is a sequential addition of components to phosphatidylinositol (PI) in the endoplasmic reticulum (ER). The first step is the transfer of N-acetylglucosamine (GlcNAc) to PI from UDP-GlcNAc to generate GlcNAc-PI. This simple step, however, is regulated by at least three genes because in both mammals and yeasts, there are three mutants of different complementation classes. To clarify this complexity, we analyzed the products of two cloned human genes, PIG-A and PIG-H. Here we demonstrate 1) that PIG-A is an ER transmembrane protein with a large cytoplasmic domain that has homology to a bacterial GlcNAc transferase and a small lumenal domain; 2) that PIG-H is a cytoplasmically oriented, ER-associated protein; and 3) that they form a protein complex. We also show that part of the small lumenal domain of PIG-A plays an essential functional role in targeting itself to the rough ER. Taken together with the cytoplasmic orientation of GlcNAc-PI, these results indicated that PIG-A and PIG-H are subunits of the GPI GlcNAc transferase that transfers GlcNAc to PI on the cytoplasmic side of the ER.

Reference Type
Journal Article
Authors
Watanabe R, Kinoshita T, Masaki R, Yamamoto A, Takeda J, Inoue N
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference