Take our Survey

Reference: Winderickx J, et al. (1996) Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae: novel variations of STRE-mediated transcription control? Mol Gen Genet 252(4):470-82

Reference Help

Abstract

Saccharomyces cerevisiae cells show under suboptimal growth conditions a complex response that leads to the acquisition of tolerance to different types of environmental stress. This response is characterised by enhanced expression of a number of genes which contain so-called stress-responsive elements (STREs) in their promoters. In addition, the cells accumulate under suboptimal conditions the putative stress protectant trehalose. In this work, we have examined the expression of four genes encoding subunits of the trehalose synthase complex, GGS1/TPS1, TPS2, TPS3 and TSL1. We show that expression of these genes is coregulated under stress conditions. Like for many other genes containing STREs, expression of the trehalose synthase genes is also induced by heat and osmotic stress and by nutrient starvation, and negatively regulated by the Ras-cAMP pathway. However, during fermentative growth only TSL1 shows an expression pattern like that of the STRE-controlled genes CTT1 and SSA3, while expression of the three other trehalose synthase genes is only transiently down-regulated. This difference in expression might be related to the known requirement of trehalose biosynthesis for the control of yeast glycolysis and hence for fermentative growth. We conclude that the mere presence in the promoter of (an) active STRE(s) does not necessarily imply complete coregulation of expression. Additional mechanisms appear to fine tune the activity of STREs in order to adapt the expression of the downstream genes to specific requirements.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Winderickx J, de Winde JH, Crauwels M, Hino A, Hohmann S, Van Dijck P, Thevelein JM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference