Reference: Schmitt MJ, et al. (1996) Cell cycle studies on the mode of action of yeast K28 killer toxin. Microbiology 142 ( Pt 9):2655-62

Reference Help

Abstract


The virally encoded K28 killer toxin of Saccharomyces cerevisiae kills sensitive cells by a receptor-mediated process. DNA synthesis is rapidly inhibited, cell viability is lost more slowly and cells eventually arrest, apparently in the S phase of the cell cycle with a medium-sized bud, a single nucleus in the mother cell and a pre-replicated (1n) DNA content. Cytoplasmic microtubules appear normal, and no spindle is detectable. Arrest of a sensitive haploid yeast strain by alpha-factor at START gave complete protection for at least 4 h against a toxin concentration that killed non-arrested cells at the rate of one log each 2.5 h. Cells released from alpha-factor arrest were killed by toxin at a similar rate; arrest occurred with medium-sized buds within the same cell cycle. Cells arrested by hydroxyurea, with unreplicated DNA, or by the spindle poison methylbenzimidazol-2yl-carbamate, with unseparated chromosomes, both arrest at the checkpoint at the G2/M boundary; these arrested cells were not protected against toxin, losing about one log of viability every 4 h. Following release from the cell cycle block, a majority of these toxin-exposed cells progressed through the cell cycle and arrested in the following S-phase, again with medium-sized buds. Killing by K28 toxin apparently requires entry into the nuclear division and bud cycles, but can result from inhibition of either early or late events in these cycles. Morphogenesis in moribund cells is uniformly blocked in early S-phase with an immature bud. Toxin action causes either independent blockage of both DNA synthesis and the budding cycle, or inhibits some unknown step required for both events.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Schmitt MJ, Klavehn P, Wang J, Schonig I, Tipper DJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference