Reference: Mande SS, et al. (1996) Protein-protein interactions in the pyruvate dehydrogenase multienzyme complex: dihydrolipoamide dehydrogenase complexed with the binding domain of dihydrolipoamide acetyltransferase. Structure 4(3):277-86

Reference Help

Abstract

BACKGROUND. The ubiquitous pyruvate dehydrogenase multienzyme complex is built around an octahedral or icosahedral core of dihydrolipoamide acetyltransferase (E2) chains, to which multiple copies of pyruvate decarboxylase (E1) and dihydrolipoamide dehydrogenase (E3) bind tightly but non-covalently. E2 is a flexible multidomain protein that mediates interactions with E1 and E3 through a remarkably small binding domain (E2BD). RESULTS. In the Bacillus stearothermophilus complex, the E2 core is an icosahedral assembly of 60 E2 chains. The crystal structure of the E3 dimer (101 kDa) complexed with E2BD (4 kDa) has been solved to 2.6 A resolution. Interactions between E3 and E2BD are dominated by an electrostatic zipper formed by Arg135 and Arg139 in the N-terminal helix of E2BD and Asp344 and Glu431 of one of the monomers of E3. E2BD interacts with both E3 monomers, but the binding site is located close to the twofold axis. Thus, in agreement with earlier biochemical results, it is impossible for two molecules of E2BD to bind simultaneously to one E3 dimer. CONCLUSIONS. Combining this new structure for the E3-E2BD complex with previously determined structures of the E2 catalytic domain and the E2 lipoyl domain creates a model of the E2 core showing how the lipoyl domain can move between the active sites of E2 and E3 in the multienzyme complex.

Reference Type
Journal Article
Authors
Mande SS, Sarfaty S, Allen MD, Perham RN, Hol WG
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference