Reference: Iwata S, et al. (1996) Structure of a water soluble fragment of the 'Rieske' iron-sulfur protein of the bovine heart mitochondrial cytochrome bc1 complex determined by MAD phasing at 1.5 A resolution. Structure 4(5):567-79

Reference Help

Abstract


BACKGROUND: The 'Rieske' iron-sulfur protein is the primary electron acceptor during hydroquinone oxidation in cytochrome bc complexes. The spectroscopic and electrochemical properties of the 'Rieske' [2Fe-2S] cluster differ significantly from those of other iron-sulfur clusters. A 129-residue water soluble fragment containing the intact [2Fe-2S] cluster was isolated following proteolytic digestion of the bc1 complex and used for structural studies. RESULTS: The structure of the Rieske iron-sulfur fragment containing the reduced [2Fe-2S] cluster has been determined using the multiwavelength anomalous diffraction (MAD) technique and refined at 1.5 A resolution. The fragment has a novel overall fold that includes three sheets of beta strands. The iron atoms of the [2Fe-2S] cluster are coordinated by two cysteine (Fe-1) and two histidine (Fe-2) residues, respectively, with the histidine ligands completely exposed to the solvent. This is in contrast to the four cysteine coordination pattern observed in previously characterised [2Fe-2S] ferredoxins. The cluster-binding fold is formed by two loops connected by a disulfide bridge; these loops superpose with the metal-binding loops of rubredoxins. The environment of the cluster is stabilised by an extensive hydrogen-bond network. CONCLUSIONS: The high-resolution structure supports the proposed coordination pattern involving histidine ligands and provides a basis for a detailed analysis of the spectroscopic and electrochemical properties. As the cluster is located at the tip of the protein, it might come into close contact with cytochrome b. The exposed N epsilon atoms of the histidine ligands of the cluster are readily accessible to quinones and inhibitors within the hydroquinone oxidation (QP) pocket of the bc1 complex and may undergo redox-dependent protonation/deprotonation.

Reference Type
Journal Article
Authors
Iwata S, Saynovits M, Link TA, Michel H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference