Take our Survey

Reference: Liu J and Kane PM (1996) Mutational analysis of the catalytic subunit of the yeast vacuolar proton-translocating ATPase. Biochemistry 35(33):10938-48

Reference Help

Abstract


In order to generate a set of tools for probing structure-function relationships in the catalytic subunit of the yeast vacuolar H(+)-ATPase, the gene encoding this subunit (VMA1) was randomly mutagenized. Mutant plasmids unable to complement the growth defects of yeast cells lacking an intact VMA1 gene were isolated and sequenced. Eight different mutant alleles of VMA1 were examined for levels of the catalytic subunit and other subunits of the enzyme, assembly of the ATPase complex, targeting to the vacuolar membrane, and concanamycin A-sensitive ATPase activity. The mutations S811P and E740D resulted in mutant enzymes that assembled fully but were incapable of ATP hydrolysis, and the mutation E785G generated a similar but somewhat less severe phenotype (17% of the ATPase activity of wild-type vacuoles). When MgATP-dependent stripping of the peripheral subunits by 100 mM KNO3 was examined in these three mutants, only the E785G mutant exhibited significant stripping, suggesting that ATP hydrolysis, even at relatively low levels, generates a conformation susceptible to dissociation. Plasmids containing the mutations E751G and F752S partially complemented the growth defects and resulted in partial defects in ATPase activity that appear to reflect reduced catalytic efficiency. Partial defects in growth and ATPase activity were also seen in the Y797H mutant, but this mutation caused an assembly defect manifested as a preferential loss of two of the peripheral subunits of the enzyme. The phenotypes of these mutants are interpreted in the context of homologies with other V-type and F-type ATPases.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Liu J, Kane PM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference