Take our Survey

Reference: Stepanova L, et al. (1996) Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev 10(12):1491-502

Reference Help

Abstract

CDC37, an essential gene in Saccharomyces cerevisiae, interacts genetically with multiple protein kinases and is required for production of Cdc28p/cyclin complexes through an unknown mechanism. We have identified mammalian p50Cdc37 as a protein kinase-targeting subunit of the molecular chaperone Hsp90. Previously, p50 was observed in complexes with pp60v-src and Raf-1, but its identity and function have remained elusive. In mouse fibroblasts, a primary target of Cdc37 is Cdk4. This kinase is activated by D-type cyclins and functions in passage through G1. In insect cells, Cdc37 is sufficient to target Hsp90 to Cdk4 and both in vitro and in vivo, Cdc37/Hsp90 associates preferentially with the fraction of Cdk4 not bound to D-type cyclins. Cdc37 is coexpressed with cyclin Dl in cells undergoing programmed proliferation in vivo, consistent with a positive role in cell cycle progression. Pharmacological inactivation of Cdc37/Hsp90 function decreases the half-life of newly synthesized Cdk4, indicating a role for Cdc37/Hsp90 in Cdk4 stabilization. This study suggests a general role for p50Cdc37 in signaling pathways dependent on intrinsically unstable protein kinases and reveals a previously unrecognized chaperone-dependent step in the production of Cdk4/cyclin D complexes.

Reference Type
Journal Article
Authors
Stepanova L, Leng X, Parker SB, Harper JW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference