Take our Survey

Reference: Silberstein S and Gilmore R (1996) Biochemistry, molecular biology, and genetics of the oligosaccharyltransferase. FASEB J 10(8):849-58

Reference Help

Abstract

Asparagine-linked glycosylation is a highly conserved protein modification reaction that occurs in all eukaryotes. The initial stage in the biosynthesis of N-linked glycoproteins, catalyzed by the enzyme oligosaccharyltransferase (OST), involves the transfer of a preassembled high-mannose oligosaccharide from a dolichol-linked oligosaccharide donor onto asparagine acceptor sites in nascent proteins in the lumen of the rough endoplasmic reticulum. Biochemical, molecular biological, and genetic studies conducted during the past 5 years have resulted in an explosive growth in our knowledge concerning the OST. Although the basic biochemical properties of the enzyme were determined more than a decade ago using intact microsomal membranes, recent studies provide novel insight into the catalytic mechanism of the enzyme. The OST was recently purified as a large heteroligomeric membrane protein complex; the sequences of many of the subunits have been determined from both fungal and vertebrate sources. Consistent with the evolutionary conservation of N-linked glycosylation, protein sequence comparisons reveal significant homologies between vertebrate, invertebrate, plant, and fungal OST subunits. Yeast molecular genetic methods have been instrumental in the functional characterization of the OST subunits, and have proven to be powerful tools for the identification of novel gene products that influence oligosaccharide transfer in vivo.

Reference Type
Journal Article | Review | Review, Tutorial
Authors
Silberstein S, Gilmore R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference