Reference: Ma L and Kantrowitz ER (1996) Kinetic and X-ray structural studies of a mutant Escherichia coli alkaline phosphatase (His-412-->Gln) at one of the zinc binding sites. Biochemistry 35(7):2394-402

Reference Help

Abstract


Site-specific mutagenesis has been used to replace His-412 with glutamine in Escherichia coli alkaline phosphatase. In the wild-type enzyme His-412 is a direct ligand to one of the catalytically important zinc atoms (Zn1) in the active site. The mutant enzyme (H412Q) exhibited about the same k(cat), but a 50-fold increase in K(m) compared to the corresponding kinetic parameters for the wild-type enzyme. Furthermore, the H412Q enzyme had a lower zinc content than the wild-type enzyme. In contrast to the wild-type enzyme, Tris was less effective in the transferase reaction and dramatically inhibited the hydrolysis reaction of the H412Q enzyme. The addition of zinc to the mutant enzyme increased the k(cat) value above that of the wild-type enzyme, partially restored the weak substrate and phosphate binding, and also alleviated the inhibition by Tris. The structure of the H412Q enzyme was also determined by X-ray crystallography. The overall structure of the H412Q enzyme was very similar to that of the wild-type enzyme; the only alpha-carbon displacements over 1 angstrom were observed near the mutation site. In the H412Q structure no phosphate was bound in the active site of the enzyme; however, two water molecules were observed where phosphate normally binds in the wild-type enzyme. Close examination of the active site of the H412Q structure revealed structural changes in Ser-102 as well as at the mutation site. For example, the carbonyl oxygen of the side chain of Gln-412 rotated away from the position of His-412 in the wild-type structure, although too far away (3.2 angstroms) to coordinate to Zn1. Studies on the H412Q enzyme, and a comparison of the H412Q and H412N structures, suggest that the structure and electostatics of the imidazole ring of histidine are critical for its function as a zinc ligand in alkaline phosphatase.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Ma L, Kantrowitz ER
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference