Take our Survey

Reference: Malek O, et al. (1996) RNA editing in bryophytes and a molecular phylogeny of land plants. EMBO J 15(6):1403-11

Reference Help

Abstract


RNA editing has been observed to date in all groups of vascular plants, but not in bryophytes. Its occurrence was therefore assumed to correlate with the evolution of tracheophytes. To gain more insight into both the phylogeny of early land plants and the evolution of mitochondrial RNA editing we have investigated a number of vascular and non-vascular plant species. Contrary to the belief that editing is absent from bryophytes, here we report mitochondrial RNA editing in cox3 mRNA of the liverwort Pellia epiphylla, the mosses Tetraphis pellucida and Ceratodon purpureus and the hornwort Anthroceros crispulus. RNA editing in plants consequently predates the evolution of tracheophytes. Editing is also found in the eusporangiate ferns Ophioglossum petiolatum and Angiopteris palmiformis, the whisk fern Tmesipteris elongata and the gnetopsid Ephedra gerardiana, but was not detected in Gnetum gnemon.cox3 mRNA of the lycopsid Isoetes lacustris shows the highest frequency of RNA editing ever observed in a plant, with 39% of all cytidine residues converted to uridines. The frequency of RNA editing correlates with the genomic GC content rather than with the phylogenetic position of a species. Phylogenetic trees derived from the slowly evolving mitochondrial sequences find external support from the assessments of classical systematics.

Reference Type
Journal Article | Comparative Study
Authors
Malek O, Lattig K, Hiesel R, Brennicke A, Knoop V
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference