Reference: Matsunaga T, et al. (1996) Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease. J Biol Chem 271(19):11047-50

Reference Help

Abstract

XPF-ERCC1 and XPG proteins are nucleases that are involved in human nucleotide excision repair. In this study, we characterized the structure-specific junction-cutting activities of both nucleases using DNA substrates containing a bubble or loop structure. We found that the junction-cutting activities of XPF-ERCC1 and XPG were greatly stimulated by human replication protein A (RPA), while heterologous single-stranded DNA-binding proteins could not substitute for human RPA. To test for specific interaction between RPA and XPF-ERCC1 as is known to occur between RPA and XPG, we employed a pull-down assay with immobilized "bubble" substrate. We found that the binding of XPF-ERCC1 complex to the bubble substrate was enhanced by RPA, suggesting a possible mechanism for RPA in the excision nuclease system, that is the targeting of the nuclease subunits to their specific sites of action. Furthermore, the RPA-promoted junction cutting by XPF-ERCC1 and XPG nucleases was observed with "loop" substrates as well, raising the possibility that XPF-ERCC1, XPG, and RPA may function in removing loop structures from DNA, independent of the other subunits of the human excinuclease.

Reference Type
Journal Article
Authors
Matsunaga T, Park CH, Bessho T, Mu D, Sancar A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference