Take our Survey

Reference: Avis JM, et al. (1996) Solution structure of the N-terminal RNP domain of U1A protein: the role of C-terminal residues in structure stability and RNA binding. J Mol Biol 257(2):398-411

Reference Help

Abstract

The solution structure of a fragment of the human U1A spliceosomal protein containing residues 2 to 117 (U1A117) determined using multi-dimensional heteronuclear NMR is presented. The C-terminal region of the molecule is considerably more ordered in the free protein than thought previously and its conformation is different from that seen in the crystal structure of the complex with U1 RNA hairpin II. The residues between Asp90 and Lys98 form an alpha-helix that lies across the beta-sheet, with residues IIe93, IIe94 and Met97 making contacts with Leu44, Phe56 and IIe58. This interaction prevents solvent exposure of hydrophobic residues on the surface of the beta-sheet, thereby stabilising the protein. Upon RNA binding, helix C moves away from this position, changing its orientation by 135 degrees to allow Tyr13, Phe56 and Gln54 to stack with bases of the RNA, and also allowing Leu44 to contact the RNA. The new position of helix C in the complex with RNA is stabilised by hydrophobic interactions from IIe93 and IIe94 to IIe58, Leu 41, Val62 and His 10, as well as a hydrogen bond between Ser91 and Thr11. The movement of helix C mainly involves changes in the main-chain torsion angles of Thr89, Asp90 and Ser91, the helix thereby acting as a "lid" over the RNA binding surface.

Reference Type
Journal Article
Authors
Avis JM, Allain FH, Howe PW, Varani G, Nagai K, Neuhaus D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference