Take our Survey

Reference: Liu R and Liebman SW (1996) A translational fidelity mutation in the universally conserved sarcin/ricin domain of 25S yeast ribosomal RNA. RNA 2(3):254-63

Reference Help

Abstract


Recent evidence suggests that ribosomal RNAs have functional roles in translation. We describe here a new ribosomal RNA mutation that causes translational suppression and antibiotic resistance in eukaryotic cells. Using random mutagenesis of the cloned ribosomal RNA gene and in vivo selection, we isolated a C --> U mutation in the universally conserved sarcin/ricin domain in Saccharomyces cerevisiae 25S ribosomal RNA. This mutation changes the putative CG pair, which closes the GAGA tetraloop in the sarcin/ricin domain, into a weaker UG pair without eliminating ribosomal sensitivity to ricin. We show that suppression of several UGA, UAG, and frameshift mutations is evident when a portion of the cellular ribosomal RNA contains the C --> U mutation. Cells that contain essentially all mutant ribosomal RNA grow only 10% slower than the wild-type, but show increased suppression as well as resistance to paramomycin, G418, and hygromycin, and sensitivity to cycloheximide. Our results provide genetic evidence for the participation of the sarcin/ricin loop in maintaining translational accuracy and are discussed in terms of a hypothesis that this ribosomal RNA region normally undergoes a conformational change during translation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Liu R, Liebman SW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference