Reference: Aphasizhev R, et al. (1996) Conservation in evolution for a small monomeric phenylalanyl-tRNA synthetase of the tRNA(Phe) recognition nucleotides and initial aminoacylation site. Biochemistry 35(1):117-23

Reference Help

Abstract

We previously showed that yeast mitochondrial phenylalanyl-tRNA synthetase (MSF protein) is evolutionarily distant to the cytoplasmic counterpart based on a high degree of divergence in protein sequence, molecular mass, and quaternary structure. Using yeast cytoplasmic tRNA(Phe) which is efficiently aminoacylated by MSF protein, we report here the tRNA(Phe) primary site of aminoacylation and the identity determinants for MSF protein. As for the cytoplasmic phenylalanyl-tRNA synthetase (Sampson, J. R., Di Renzo, A. B., Behlen, L. S., and Uhlenbeck, O. C. (1989) Science 243, 1363-1366), MSF protein recognizes nucleotides from the anticodon and the acceptor end including base A73 and, as shown here, adjacent G1-C72 base pair or at least C72 base. This indicates that the way of tRNA(Phe) binding for the two phenylalanine enzymes is conserved in evolution. However, tRNA(Phe) tertiary structure seems more critical for the interaction with the cytoplasmic enzyme than with MSF protein, and unlike cytoplasmic phenylalanyl-tRNA synthetase, the small size of the monomeric MSF protein probably does not allow contacts with residue 20 at the top corner of the L molecule. We also show that MSF protein preferentially aminoacylates the terminal 2'-OH group of tRNA(Phe) but with a catalytic efficiency for tRNA(Phe)-CC-3'-deoxyadenosine reduced 100-fold from that of native tRNA(Phe), suggesting a role of the terminal 3'-OH in catalysis. The loss is only 1.5-fold when tRNA(Phe)-CC-3'-deoxyadenosine is aminoacylated by yeast cytoplasmic PheRS (Sprinzl, M., and Cramer, F. (1973) Nature 245, 3-5), indicating mechanistic differences between the two PheRS's active sites for the amino acid transfer step.

Reference Type
Journal Article
Authors
Aphasizhev R, Senger B, Rengers JU, Sprinzl M, Walter P, Nussbaum G, Fasiolo F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference