Take our Survey

Reference: Thorvaldsen JL, et al. (1993) Regulation of metallothionein genes by the ACE1 and AMT1 transcription factors. J Biol Chem 268(17):12512-8

Reference Help

Abstract

The AMT1 metalloregulatory trans-acting factor from Candida glabrata was found to functionally mimic the ACE1 metalloregulatory trans-acting factor from Saccharomyces cerevisiae in the copper-induced expression of the chromosomal S. cerevisiae metallothionein gene. Plasmid constructs with promoters of various metal-inducible genes fused to the bacterial beta-galactosidase (lacZ) reporter gene were used in S. cerevisiae to evaluate the roles of ACE1 and AMT1 in mediating metal-stimulated expression. Promoters from the S. cerevisiae CUP1 gene and Cu,Zn-superoxide dismutase (SOD1) and from the C. glabrata MT genes MTI, MTIIa, and MTIIb were used. The ACE1 factor was effective in the metalloregulation of the two S. cerevisiae promoters, CUP1 and SOD1, but of only one C. glabrata promoter, MTI. AMT1 was found to be effective in the metalloregulation of all three C. glabrata MT promoters and the two S. cerevisiae promoters tested. The regulation mediated by both ACE1 and AMT1 was copper-dependent and copper-specific. Episomally expressed SWI5, a distinct trans-acting factor of S. cerevisiae, enhanced only the basal expression from promoters. The SWI5 enhancement was not metal dependent. In conclusion, AMT1 and ACE1 are functionally homologous in metal-specific regulation, AMT1 appears to be more promiscuous than ACE1 in this function.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Thorvaldsen JL, Sewell AK, McCowen CL, Winge DR
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference