Take our Survey

Reference: Lodi T and Ferrero I (1993) Isolation of the DLD gene of Saccharomyces cerevisiae encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase. Mol Gen Genet 238(3):315-24

Reference Help

Abstract

In Saccharomyces cerevisiae the utilization of lactate occurs via specific oxidation of L- and D-lactate to pyruvate catalysed by L-lactate ferricytochrome c oxidoreductase (L-LCR) (EC 1.1.2.3) encoded by the CYB2 gene, and D-lactate ferricytochrome c oxidoreductase (D-LCR) (EC 1.1.2.4), respectively. We selected several lactate- pyruvate+ mutants in a cyb2 genetic background. Two of them were devoid of D-LCR activity (dld mutants, belonging to the same complementation group). The mutation mapped in the structural gene. This was demonstrated by a gene dosage effect and by the thermosensitivity of the enzyme activity of thermosensitive revertants. The DLD gene was cloned by complementation for growth on D-, L-lactate in the strain WWF18-3D, carrying both a CYB2 disruption and the dld mutation. The minimal complete complementing sequence was localized by subcloning experiments. From the sequence analysis an open reading frame (ORF) was identified that could encode a polypeptide of 576 amino-acids, corresponding to a calculated molecular weight of 64000 Da. The deduced protein sequence showed significant homology with the previously described microsomal flavoprotein L-gulono-gamma-lactone oxidase isolated from Rattus norvegicus, which catalyses the terminal step of L-ascorbic acid biosynthesis. These results are discussed together with the role of L-LCR and D-LCR in lactate metabolism of S. cerevisiae.

Reference Type
Journal Article
Authors
Lodi T, Ferrero I
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference