Take our Survey

Reference: Longhese MP, et al. (1993) Conditional mutations in the yeast DNA primase genes affect different aspects of DNA metabolism and interactions in the DNA polymerase alpha-primase complex. Genetics 133(2):183-91

Reference Help

Abstract


Different pri1 and pri2 conditional mutants of Saccharomyces cerevisiae altered, respectively, in the small (p48) and large (p58) subunits of DNA primase, show an enhanced rate of both mitotic intrachromosomal recombination and spontaneous mutation, to an extent which is correlated with the severity of their defects in cell growth and DNA synthesis. These effects might be attributable to the formation of nicked and gapped DNA molecules that are substrates for recombination and error-prone repair, due to defective DNA replication in the primase mutants. Furthermore, pri1 and pri2 mutations inhibit sporulation and affect spore viability, with the unsporulated mutant cells arresting with a single nucleus, suggesting that DNA primase plays a critical role during meiosis. The observation that all possible pairwise combinations of two pri1 and two pri2 alleles are lethal provides further evidence for direct interaction of the primase subunits in vivo. Immunopurification and immunoprecipitation studies on wild-type and mutant strains suggest that the small subunit has a major role in determining primase activity, whereas the large subunit directly interacts with DNA polymerase alpha, and either mediates or stabilizes association of the p48 polypeptide in the DNA polymerase alpha-primase complex.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Longhese MP, Jovine L, Plevani P, Lucchini G
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference