Reference: Maeda T, et al. (1993) Mutations in a protein tyrosine phosphatase gene (PTP2) and a protein serine/threonine phosphatase gene (PTC1) cause a synthetic growth defect in Saccharomyces cerevisiae. Mol Cell Biol 13(9):5408-17

Reference Help

Abstract

Two protein tyrosine phosphatase genes, PTP1 and PTP2, are known in Saccharomyces cerevisiae. However, the functions of these tyrosine phosphatases are unknown, because mutations in either or both phosphatase genes have no clear phenotypic effects. In this report, we demonstrate that although ptp2 has no obvious phenotype by itself, it has a profound effect on cell growth when combined with mutations in a novel protein phosphatase gene. Using a colony color sectoring assay, we isolated 25 mutants in which the expression of PTP1 or PTP2 is required for growth. Complementation tests of the mutants showed that they have a mutation in one of three genes. Cloning and sequence determination of one of these gene, PTC1, indicated that it encodes a homolog of the mammalian protein serine/threonine phosphatase 2C (PP2C). The amino acid sequence of the PTC1 product is approximately 35% identical to PP2C. Disruption of PTC1 indicated that the PTC1 function is nonessential. In contrast, ptc1 ptp2 double mutants showed a marked growth defect. To examine whether PTC1 encodes an active protein phosphatase, a glutathione S-transferase (GST)-PTC1 fusion gene was constructed and expressed in Escherichia coli. Purified GST-PTC1 fusion protein hydrolyzed a serine phosphorylated substrate in the presence of the divalent cation Mg2+ or Mn2+. GST-PTC1 also had weak (approximately 0.5% of its serine phosphatase activity) protein tyrosine phosphatase activity.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S. | Comparative Study
Authors
Maeda T, Tsai AY, Saito H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference