Take our Survey

Reference: Peltz SW, et al. (1993) mRNA destabilization triggered by premature translational termination depends on at least three cis-acting sequence elements and one trans-acting factor. Genes Dev 7(9):1737-54

Reference Help

Abstract


Nonsense mutations in a gene can accelerate the decay rate of the mRNA transcribed from that gene, a phenomenon we describe as nonsense-mediated mRNA decay. Using amber (UAG) mutants of the yeast PGK1 gene as a model system, we find that nonsense-mediated mRNA decay is position dependent, that is, nonsense mutations within the initial two-thirds of the PGK1-coding region accelerate the decay rate of the PGK1 transcript < or = 12-fold, whereas nonsense mutations within the carboxy-terminal third of the coding region have no effect on mRNA decay. Moreover, we find that this position effect reflects (1) a requirement for sequences 3' to the nonsense mutation that may be necessary for translational reinitiation or pausing, and (2) the presence of an additional sequence that, when translated, inactivates the nonsense-mediated mRNA decay pathway. This stabilizing element is positioned within the coding region such that it constitutes the boundary between nonsense mutations that do or do not affect mRNA decay. Rapid decay of PGK1 nonsense-containing transcripts is also dependent on the status of the UPF1 gene. Regardless of the position of an amber codon in the PGK1 gene, deletion of the UPF1 gene restores wild-type decay rates to nonsense-containing PGK1 transcripts.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Peltz SW, Brown AH, Jacobson A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference