Reference: Dang YL and Martin NC (1993) Yeast mitochondrial RNase P. Sequence of the RPM2 gene and demonstration that its product is a protein subunit of the enzyme. J Biol Chem 268(26):19791-6

Reference Help

Abstract


We report here the sequence of the RPM2 gene which codes for the 105-kDa protein previously purified from the mitochondria of Saccharomyces cerevisiae and shown by genetic techniques to be required for mitochondrial RNase P activity. The sequence predicts a primary translation product of 1202 residues with a molecular mass of 139 kDa and no obvious sequence similarity to any known protein in the data bases. There are 122 amino-terminal amino acids predicted by the gene that are not found in the purified protein, some of which may play a role in mitochondrial targeting of the protein. Antibodies raised against a trpE-105-kDa fusion protein recognize a 105-kDa protein in wild-type cells but not in cells carrying a disruption of the RMP2 gene. Immune, but not preimmune serum, immunoprecipitates the RNase P RNA and the mitochondrial RNase P activity. Thus, the 105-kDa protein forms a complex with RNase P RNA and is required for RNase P activity as predicted for a bona fide subunit of the enzyme.

Reference Type
Journal Article
Authors
Dang YL, Martin NC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference