Take our Survey

Reference: Elledge SJ, et al. (1993) DNA damage and cell cycle regulation of ribonucleotide reductase. Bioessays 15(5):333-9

Reference Help

Abstract


Ribonucleotide reductase (RNR) catalyzes the rate limiting step in the production of deoxyribonucleotides needed for DNA synthesis. In addition to the well documented allosteric regulation, the synthesis of the enzyme is also tightly regulated at the level of transcription. mRNAs for both subunits are cell cycle regulated and inducible by DNA damage in all organisms examined, including E. coli, S. cerevisiae and H. sapiens. This DNA damage regulation is thought to provide a metabolic state that facilitates DNA replicational repair processes. S. cerevisiae also encodes a second large subunit gene, RNR3, that is expressed only in the presence of DNA damage. Genetic analysis of the DNA damage response in S. cerevisiae has shown that RNR expression is under both positive and negative control. Among mutants constitutive for RNR expression are the general transcriptional repression genes, SSN6 and TUP1. Mutations in POL1 and POL3 also activate RNR expression, indicating that the DNA damage sensory network may respond directly to blocks in DNA synthesis. A protein kinase, Dun1, has been identified that controls inducibility of RNR1, RNR2 and RNR3 in response to DNA damage and replication blocks. This result suggests that the RNR genes in S. cerevisiae form a regulon that is coordinately regulated by protein phosphorylation in response to DNA damage.

Reference Type
Journal Article | Review | Review, Tutorial
Authors
Elledge SJ, Zhou Z, Allen JB, Navas TA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference