Take our Survey

Reference: Hampton RY and Rine J (1994) Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic reticulum, in yeast. J Cell Biol 125(2):299-312

Reference Help

Abstract

Numerous integral membrane proteins are degraded in the mammalian ER. HMG-CoA reductase (HMG-R), a key enzyme in the mevalonate pathway by which isoprenoids and sterols are synthesized, is one substrate of ER degradation. The degradation of HMG-R is modulated by feedback signals from the mevalonate pathway. We investigated the role of regulated degradation of the two isozymes of HMG-R, Hmg1p and Hmg2p, in the physiology of Saccharomyces cerevisiae. Hmg1p was quite stable, whereas Hmg2p was rapidly degraded. Degradation of Hmg2p proceeded independently of vacuolar proteases or secretory traffic, indicating that Hmg2p degradation occurred at the ER. Hmg2p stability was strongly affected by modulation of the mevalonate pathway through pharmacological or genetic means. Decreased mevalonate pathway flux resulted in decreased degradation of Hmg2p. One signal for degradation of Hmg2p was a nonsterol, mevalonate-derived molecule produced before the synthesis of squalene. Genetic evidence indicated that a farnesylated protein may also be necessary for Hmg2p degradation. Studies with reporter genes demonstrated that the stability of each isozyme was determined by its noncatalytic NH2-terminal domain. Our data show that ER protein degradation is widely conserved among eukaryotes, and that feedback control of HMG-R degradation is an ancient paradigm of regulation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Hampton RY, Rine J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference