Take our Survey

Reference: McNeil JB, et al. (1994) Cloning and molecular characterization of three genes, including two genes encoding serine hydroxymethyltransferases, whose inactivation is required to render yeast auxotrophic for glycine. J Biol Chem 269(12):9155-65

Reference Help

Abstract

The genes encoding both the cytosolic and mitochondrial serine hydroxymethyltransferases (SHM2 and SHM1, respectively) and a third unidentified gene of the yeast Saccharomyces cerevisiae have been isolated and their nucleotide sequences determined. Analysis of the predicted amino acid sequence of the amino-terminal regions, sequence comparison with other genes encoding SHMT enzymes, and subcellular fractionation studies all suggested that the SHM1 gene encodes the mitochondrial SHMT, while the SHM2 gene encodes the cytosolic enzyme. The SHM2 gene but not the SHM1 gene has putative GCN4 sites upstream of the putative TATA box, suggesting regulation of its transcription by the general amino acid control system. Yeast mutants with disruptions at each SHM gene and in both genes were constructed and all mutants had the same growth requirements as the parental strains. Mutagenesis of the double-disrupted, shm1 shm2 yeast yielded strains of a single complementation group that are auxotrophic for glycine. Complementation of the glycine auxotrophy using a yeast genomic library retrieved the SHM1 and SHM2 genes and a third gene designated GLY1. Gene disruption studies demonstrated that inactivation of SHM1, SHM2, and GLY1 is required to yield yeast that are completely auxotrophic for glycine.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Comparative Study
Authors
McNeil JB, McIntosh EM, Taylor BV, Zhang FR, Tang S, Bognar AL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference